

"DER JUNGE SPORTLER MIT DEM ALTEN KNIE"

MÖGLICHKEITEN UND GRENZEN DER REKONSTRUKTIVEN CHIRURGIE, SPORTLERBERATUNG, LIFESTYLEMODIFIKATION

Liebensteiner Michael C.

Universitätsklinik f. Orthopädie Innsbruck, Innsbruck, Austria

JUNGER PATIENT – ALTES KNIE ...

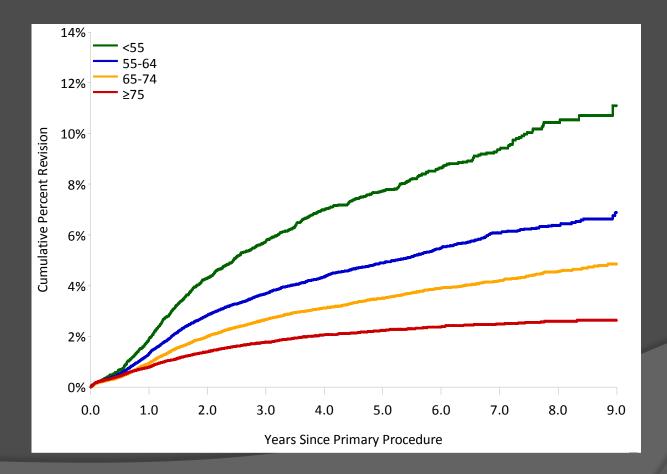
 Ständig steigende Zahlen von jungen Menschen mit relevanter Kniegelenks-Degeneration

National Institute for Health and Clinical Excellence. National Collaborating Centre for Chronic Conditions Osteoarthritis: national clinical guideline for care and management in adults. London, UK: NICE; 2008

- Ursachen ?
 - Anstieg von adipösen Menschen
 - Relative Verschiebung von "jung vs. alt"
 - Geänderte Erwartungen bzgl. Aktivität

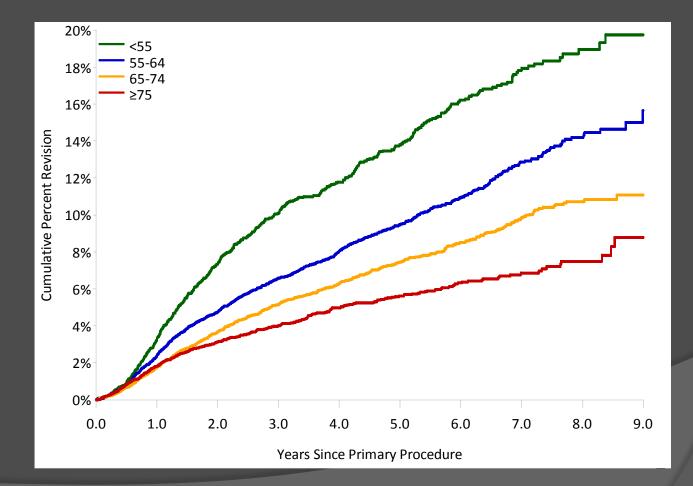
Sutton, Holloway. BMC Med. 2013 Jan 18 Woolf, Pfleger. Bull World Health Organ. 2003; 81(9)

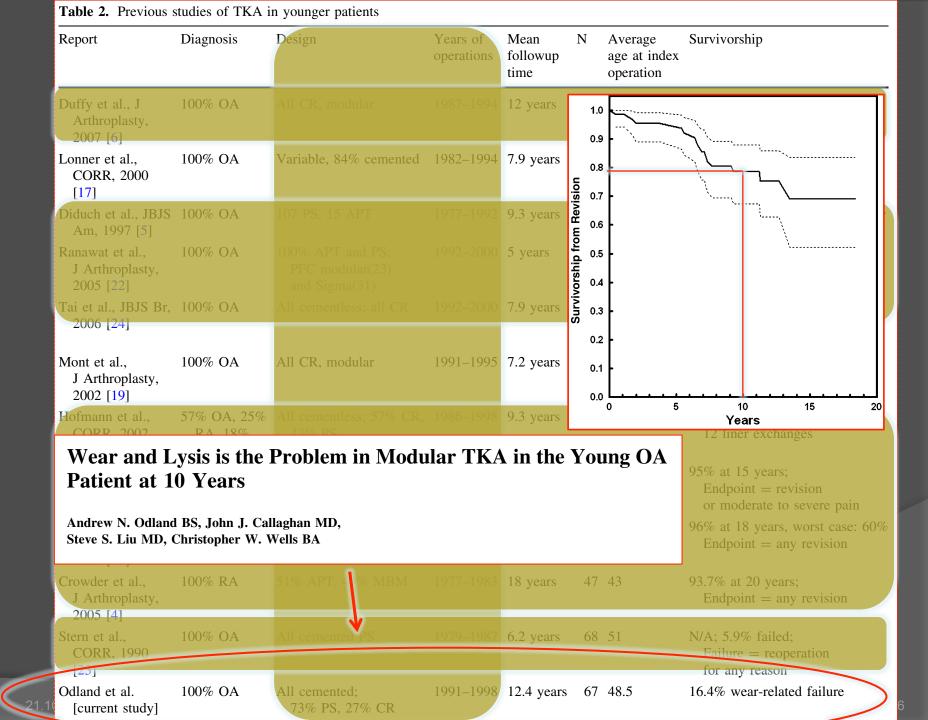
UNTERSCHIED ZU "DER ALTE MIT DEM ALTEN KNIE" ?


Vorschlag: Knie TEP beim 20-50 Jährigen und alles ist gut

- Revisionsrate ?
- Klinisches Score Outcome ?
- Aktivitätslevel ?

UNTERSCHIED ZU "DER ALTE MIT DEM ALTEN KNIE" ?


K-TEP Australisches Register 2010

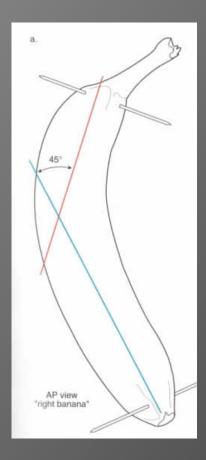


Hemischlitten Australisches Register 2010

Medizinische Universität Innsbruck Universitätsklinik für Orthopädie

ALTERNATIVEN ?!

GELENKERHALTENDE / REKONSTRUKTIVE KNIECHIRURGIE


KONSERVATIVE THERAPIE / LIFESTYLE

- Osteotomie (Femur, Tibia, auf/zuklappend, Tuberositas Distalisierung / Medialisierung, Trochlea)
- Bandplastiken (Kreuzbänden Aler, MPFL, LRL)
 Menisku Teilmenis
- Knorpel-Chirurgie (MF, ACI, Mosaikplastik)

u.v.m.

Hohe

Tibiaosteotomie (HTO)

aus: Paley D., Principles of Deformity Correction

Medizinische Universität Universitätsklinik fü HTO Typ (ow, cw, HCO, dome...) HTO vs. UKA vs. TEP vs. konservativ

Outcome HTO (Überleben, Scores...)

Valgus-HTO bei Medialer Kompartment Arthrose (MCOA)

OP – Technik (Fixation, Graft…)

Kombinationseingriffe Einfluss von BMI, Alter, Beinachse

Arch Orthop Trauma Surg (2008) 128:111–115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela · Pedross Florian · Liebensteiner Michael · Bach Christian

Überleben der HTO

 Mögliche Einfluss-Faktoren (Alter, Gechlecht, Beinachse)

Arch Orthop Trauma Surg (2008) 128:111-115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela • Pedross Florian • Liebensteiner Michael • Bach Christian

D

METHODIK:

- 134 HTOs (1981-1997)
- Alter 54,5 (19-74)
- Durchschnittliches Follow-Up 12,4 Jahre
- Lateral zuklappende HTO (Coventry)

Aus: Coventry 1973 JBJS-Am 55(1)

Arch Orthop Trauma Surg (2008) 128:111–115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela · Pedross Florian · Liebensteiner Michael · Bach Christian

METHODIK:

- <u>Überleben:</u>
 - Endpunkt ,Revision zur Knie-TEP'
- Klinisches Outcome:
 - VAS Schmerz (präop, 6 Wo, 6 Mo, 12 Mo)
- Radiologisches Outcome:

Arch Orthop Trauma Surg (2008) 128:111-115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

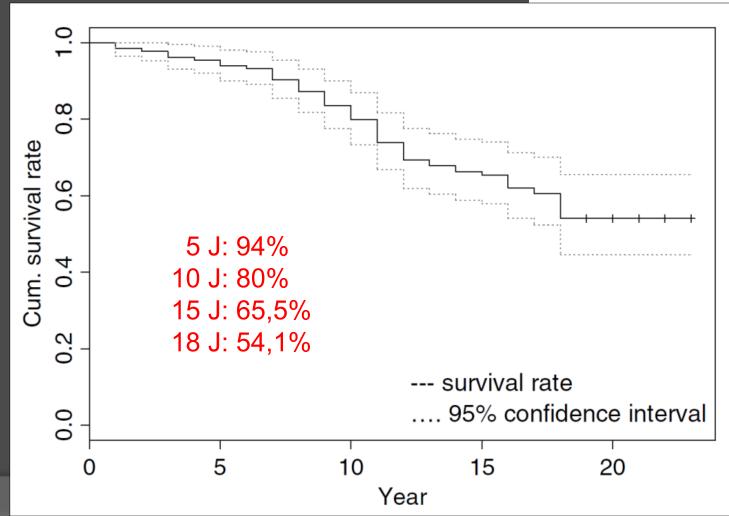
Long-term outcome after high tibial osteotomy

Gstöttner Michaela · Pedross Florian · Liebensteiner Michael · Bach Christian

ERGEBNISSE:

- VAS Schmerz: von 7,9 auf 2,9 (12 Mo)
- mFTA nach 12 Monaten:

mFTA	12 Mo postop
11°-15° valgus	0%
6°-10° valgus	20,1%
1°-5° valgus	59,7%
0°-5° varus	20,1%
6°-10° varus	0%



Arch Orthop Trauma Surg (2008) 128:111–115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela · Pedross Florian · Liebensteiner Michael · Bach Christian

ERGEBNISSE:

Arch Orthop Trauma Surg (2008) 128:111-115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela · Pedross Florian · Liebensteiner Michael · Bach Christian

ERGEBNISSE:

- Überleben <u>beeinflusst</u> durch Alter (p=0,004)
- Je älter bei HTO, desto eher Konversion zu TEP
- Überleben <u>nicht beeinflusst</u> durch...
 - das Geschlecht (p=0,121)

 - die 12 Mo postop Beinachse (p=0,614)

Arch Orthop Trauma Surg (2008) 128:111–115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela · Pedross Florian · Liebensteiner Michael · Bach Christian

ERGEBNISSE:

Komplikationen:

- O Phlebothrombose: 10
- Läsion Nervus peronaeus: 7
- Oberflächlicher Infekt: 2
- Verzögerte Knochenheilung Tibia: 4

Arch Orthop Trauma Surg (2008) 128:111-115 DOI 10.1007/s00402-007-0438-0

ORTHOPAEDIC OUTCOME ASSESSMENT

Long-term outcome after high tibial osteotomy

Gstöttner Michaela • Pedross Florian • Liebensteiner Michael • Bach Christian

EINSCHRÄNKUNGEN / VERSÄUMNISSE UNSERER STUDIE

- Level of Evidence
- Kein Knie Score
- Kein Aktivitäts Score
- Kein großer Neuwert...

LANGZEIT-ÜBERLEBEN HTO

©Liebensteiner	Тур НТО	5 J.	10 J.	15 J.	20 J.
Gstöttner 08 AOTS	CW	94%	80%	66%	+ Viele Studien
Aglietti 03 J Knee Surg	CW	96%	78%	57%	
Billings 00 JBJS-Am	CW	85%	53%		+ lange FU-
Coventry 93 JBJS-Am	CW	89%	75%		Zeiten
Gall 05 Z Orthop Grenz	CW	95%	77%		– Fast nur cw
Holden 88 JBJS-Am	CW		94%		
Huang 05 CORR	CW	95%	85%		– LoE IV
Naudie 99 CORR	CW	73%	51%	39%	<u>3</u> 0%
Sprenger 03 JBJS-A	CW	86%	74%	56%	
Tang 05 Knee	CW	90%	75%	67%	
Papachristou 06 Int Orth	CW	91%	80%	66%	
Koshino 04 Knee	CW		95%		
Akizuki 08 JBJS-Br	CW		98%	90%	
Flecher 06 CORR	CW	95%	93%	90%	85%
Hernigou 01 Knee	ow	94%	85%	68%	
Weale 01 CORR	НСО	89%	63%		
W-Dahl 110 Acta Orth	нсо	92%	83%		

VERGLEICH 2 TYPEN / TECHNIKEN HTO

©Liebensteiner	Vergleich	Parameter	FU	Resumé
Adili 02 KSSTA	cw vs. owHTO	Klinisches Outcome	28 Mo	pro OW
Brouwer 06 JBJS-Br	cw vs. owHTO	Achskorrektur & Klinisches Outcome	12 Mo	pro OW
Gaasbeek 10 IntOrth	cw vs. owHTO	Achskorrektur & Klinisches Outcome	12 Mo	pro OW
Luites 09 JBJS-Br	cw vs. owHTO	Stabilität & Klinisches Outcome	24 Mo	gleich
van den Bekerom 08 J Knee Surg	cw vs. owHTO	Komplikationen	11 Mo	pro CW

VERGLEICH 2 TYPEN / TECHNIKEN HTO

©Liebensteiner	Vergleich	Parameter	FU	Resumé
Nakamura 01 JBJS-Br	DomHTO vs. HCO	Radiolog. Outcome	12 Mo	pro HCC
Magyar 99 JBJS-Br	cwHTO vs. HCO	Radiolog. Outcome	24 Mo	pro HCC
		Klinisches Outcome		gleich
Myrnerts 80 Acta Orth	HTO (cw) +/- Überkorrektur	Klinisches Outcome	24 Mo	pro Überk
Pape 10 KSSTA	owHTO uni- vs. Biplanar	Stabilität	kadaver	pro biplaria
Papp 09 Arthroscopy	cw vs. "kombinierte" HTO	Radiolog. Outcome	12 Mo	pro "kombiniert
Zorzi 11 Artif Organs	owHTO +/- Autograft	OT - Heilung	23 Mo	gleich

	izinische Universität Innsbruck iversitätsklinik für Orthopädie	VERGLE	ICH LITEF	RATUR	
	ELSEVIER	Contents lists available at Scien	iceDirect	Кпее	
	radiological outc	ing-wedged high tibial osteotom omes kton ^{b,1} , P. Mitchell ^{c,1} , C.B. Hing ^{c,1}	ny: A meta-analysis of cl 2011	linical and	
1	5 RCT	& 7 nRCT einges	chlossen		
	● 324 ov	v vs. 318 cw			
	Hauptp	arameter: VAS S	chmerz		
		parameter: Div. K og. Outcome, Kor			t

Medizinische Universität Innsbruck Universitätsklinik für Orthopädie	VERGLEICH LI	reratur				
ELSEVIER	Contents lists available at ScienceDirect The Knee	Knee				
radiological outcomes T.O. Smith ^{a,*,1} , D. Sexton ^{b,1} , P. Mitch	-					
	keine Unterschiede	zw. OW & CW (3				
Stud)	Max FU 8 – 27 Mo					
Lysholm + OP	 Heterogenität bzgl. 					
keine sign.	Fixation der HTOs					
ROM, Liegeda	<u>uer, HSS:</u> keine Meta	Analyse möglich				
 <u>mFTA:</u> mehr Präzision bei OW = Erzielen der geplanten Korrektur 						

<u>Falls Unterschiede identifizierbar</u> <u>beim Vergleich unterschiedlicher OP</u> <u>Typen / Techniken....</u>

- Öffnen oder Schließen eines Keils
- Art der Fixation
- Lokalisation und Ausführung der Schnitte

er

aus: Gaasbeek. The Knee 2004

Study	Fixation
Brouwer et al. [29]	o-puddu plate c-staples/pop
El-Azab (32)	o-self locking plate c-compression plate
El-Azab [33]	o-non locking/locking compression c-compression plate
Gaasbeek et al. [12]	Locked plate
Hankemeier et al. [21]	o-fixed angle plate c-screw plate
Hoell et al. [34]	o-puddu plate c-coventry
Luites et al. [36]	Tomofix plates and screws
Magyar et al. [28]	o-Ex-fix c-bone staple
Magyar et al. [27]	o-bone staple c-Ex-fix
Schaefer et al. [45]	o-puddu plate c — N/S
Schiedel et al. [35]	o-Ex fix c-bone staples
Van Raaij et al. [35]	o-plate c-staples/cast

aus: Smith 2011. Knee 18 (6)

HTO VS UNI

HIGH TIBIAL OSTEOTOMY VERSUS UNICOMPARTMENTAL KNEE ARTHROPLASTY FOR MEDIAL COMPARTMENT ARTHROSIS OF THE KNEE: A REVIEW OF THE LITERATURE

Federico Dettoni, MD,* Davide Edoardo Bonasia, MD,* Filippo Castoldi, MD,* Matteo Bruzzone, MD,* Davide Blonna, MD,* Roberto Rossi, MD*

+ 8 kontrollierte Studien
- FU-Perioden von ½ bis 10 J.

TABLE 2. Summary of studies that compared groups of patients treated with HTO and UKA										
author	year	type of study		number	r HTO type/ UKA model	Follow-up	survivors	hip Outcome	pain	ROM
Karpman, Volz	1982	retrospective	HTO UKA	23 21	CWHTO ??	2 y 3 y	100% 91%	57% good/excellent 91% good/excellent	-	-
Broughton et al	1986	retrospective	HTO UKA	49 42	CWHTO St Georg	7.8 y 5.8 y	80% 93%	43% good/excellent (Baily) 76% good/excellent (Baily)	59% no/mild 87% no/mild	-
Weale Newman	1994	retrospective	HTO UKA	49 42	CWHTO St Georg	12-17 y	65% 88%	21% good/excellent (Baily) 41% good/excellent (Baily)	43% no/mild 80% no/mild	-
Ivarsson Gillquist	1991	prospective matched	HTO UKA	10 10	CWHTO Oxford / PCA	12 mo 6 mo	100% 100%	40% good/excellent (Lysholm) 80% good/excellent (Lysholm)	6.3 / 100 4.1 / 100	112° 121°
Stukenborg- Colsman et al.	2001	prospective randomized	HTO UKA	32 28	CWHTO Oxford / PCA	7-10 y	60% 77%	71% good/excellent (KSS) 65% good/excellent (KSS)	-	117° 103°
Borjesson et al	2005	prospective randomized	HTO UKA	18 22	CWHTO Brigham	5 y	100% 100%	BOA score median 37 (max=39) BOA score median 37 (max=39)		123° 123°
Dettoni et al	2008	prospective	HTO UKA	54 56	OWHTO (Puddu) Accuris	2-4 y	100% 100%	93% good/excellent (KSS) 95% good/excellent (KSS)	-	-
W-Dahl et al	2010 UKA	national registry review	НТО	450 4799	Hemicallotasis Many	10 y	83% 83%	-	-	-

Year = year of publication; HTO = high tibial osteotomy; UKA = unicompartmental knee arthroplasty; CWHTO = closing wedge high tibial osteotomy; OWHTO = opening wedge high tibial osteotomy; y = years; mo = months; Baily = Baily Knee Score; Lysholm = Lysholm Knee Score; KSS = Knee Society Score; BOA score = British Orthopaedic Association Score.

aus Dettoni 2010 Iowa Orthopaedic Journal

HTO VS UNI

HIGH TIBIAL OSTEOTOMY VERSUS UNICOMPARTMENTAL KNEE ARTHROPLASTY FOR MEDIAL COMPARTMENT ARTHROSIS OF THE KNEE: A REVIEW OF THE LITERATURE

Federico Dettoni, MD,* Davide Edoardo Bonasia, MD,* Filippo Castoldi, MD,* Matteo Bruzzone, MD,* Davide Blonna, MD,* Roberto Rossi, MD*

Resumé der Autoren:

- Beide Methoden effektiv mit vergleichbarem klinischen Outcome & Überleben
- Nur bedingt konkurrierende Prozeduren

HTO VS UNI

Nur bedingt konkurrierende Prozeduren

TABLE 1. Ideal indications for UKA, HTO and overlaps between the two treatments					
	UKA	HTO or UKA	НТО		
Age	> 55 years	55 – 65 years	< 65 years		
Activity level	low demands	Moderately active	Active		
Weight (BMI)	< 30 < 30	Any			
Alignment	0 - 5°	$5 - 10^{\circ}$	$5 - 15^{\circ}$		
AP Instability	No to grade I	No to grade I	Any		
ML Instability	No to grade I	No to grade I	No to grade II		
ROM	Arc 90° and $< 5^{\circ}$ flexion contracture	Arc 100° and $< 5^{\circ}$ flexion contracture	Arc 120° and $< 5^{\circ}$ flex contracture		
Arthrosis severity	Any	Ahlback II	Ahlback I - II		

UKA = medial unicompartmental knee arthroplasty; HTO = high tibial valgus osteotomy; BMI = body mass index; AP Instability = anteroposterior instability; ML Instability = medio-lateral instability; instability grading: according to the American Medical Association (grade I = 0-5 mm, grade II = 5-10 mm, grade III = >10 mm, no hard stop); Arthrosis severity = medial compartment arthrosis according to Ahlback classification, assuming that lateral and patellofemoral compartments are intact.

aus Dettoni 2010 Iowa Orthopaedic Journal

Uni nur bedingt vergleichbar ? PROBLEM PASSENDE KONTROLLGRUPPE ZU HTO ?

Brouwer RW, van Raaij TM, Bierma-Zeinstra SMA, Verhagen AP, Jakma TT, Verhaar JAN

Ausschließlich <u>kontrollierte Studien</u> akzeptiert RCT oder CCT bis 2007

Osteotomy for treating knee osteoarthritis (Review)

Brouwer RW, van Raaij TM, Bierma-Zeinstra SMA, Verhagen AP, Jakma TT, Verhaar JAN

- I3 Studien akzeptiert
- Oiverse Outcome-Parameter
- Oiverse Kontrollgruppen
 - HTO vs. Uni
 - HTO vs. HTO (unterschiedliche Technik)
 - HTO vs. HTO + Zusatzeingriff
 - HTO bei Patienten mit unterschiedlichen Konditionen
 - HTO bei Pa Keine Studien HTO vs. Konservativ auffindbar !

stop Regime

Osteotomy for treating knee osteoarthritis (Review)

Brouwer RW, van Raaij TM, Bierma-Zeinstra SMA, Verhagen AP, Jakma TT, Verhaar JAN

SCHLUSSFOLGERUNGEN DER AUTOREN :

- Silber' Level Evidenz, dass Valgus-HTO Funktion verbessert und Schmerz reduziert
- Keine (ausreichende) Evidenz für...
 - Überlegenheit einer bestimmten Technik
 - Überlegenheit HTO gegenüber konservative Therapie

Schlechte Evidenzlage – wenig kontrollierte Studien mit ausreichend langem FU

KOMBINATIONSEINGRIFFE: Kontrollierte Studien HTO vs. HTO+x ?

©Liebensteiner	x	FU	Ergebnis
Akizuki 97 Arthroscopy	Abrasionsarthroplastik	2-9 J.	Gleiches klinisches Outcome Bessere Knorpelhistologie
Linke 06 Oper Orth Traum	СМІ	2 J.	Gleiches klinisches Outcome
Pascale 11 Orthopedics	MF	5 J.	Patientenzufriedenheit besser Knie-Scores gleich
Christodoulou 05 CORR	Lateraler Retinakulum Release	5 J.	Besseres klinisches Outcome und ROM

Medizinische Universität Innsbruck Universitätsklinik für Orthopädie

RESUMÉ - EVIDENZ

- HTO verbessert Schmerz und Funktion
- Beste Technik unklar
- Es ist zu abzuwarten, ob die leicht besseren, kurzfristigen Ergebnisse der OW-HTO sich längerfristig auch in besserem Überleben auswirken
- Vorsichtiger Optimismus, dass Kombinationseingriffe die langfristige Performance der HTO verbessern werden

Autologe Chondrozyten Implantation / Transplantation (ACI / ACT)

Schericker d. Cartilage Repair

- 1. Mark-stimulierende Techniken (MF, AMIC)
- 2. Autologe Osteochondrale Transplantation
- 3. Autologe Chondrocyten Transplantation (ACT)
 - = Autologe Chondrocyten Implantation (ACI)

- Diagnostische ASK + Knorpelentnahme (200-300mg)
- 3-4 Wochen Knorpelzellzüchtung
- Implantation flüssig (ACI-P, ACI-C) oder auf 'Matrix' (MACI)

Reha-Protokol nach tibiofemoraler Knorpelchirurgie (MF od ACT) © Liebensteiner 2010							
Zeit	Belastung [% KG]	CPM (Motor- schiene) 6h/Tag 1Zyklus/min	Orthese (24h, außer bei CPM und Patella- mobilisation)	physiotherapeut Übungen	Sport	Sonstiges	
Tag 0	-	-	0° ROM	-	-	Hochlagern, Kühlung, Kompression	
Tag 1 - Tag 14	0	0 - 90°	0 - 90° ROM	isometrisches Quadric.training, Manuelle Patellamobilisation, Lymphdrainage, Wadenpumpe	-	Hochlagern, Kühlung, Kompression	
Woche 3 - 4	0	0-120°	-	isometrisches Quadric.training, Manuelle Patellamobilisation, Lymphdrainage, Wadenpumpe	Fahrradergo-metrie ohne Widerstand	Hochlagern, Kühlung v.a. nach Übungen	
Woche 5 - 6	Steigerung von 0 auf 50	0-120°	-	isometrisches Quadric.training, Manuelle Patellamobilisation, Lymphdrainage, Unterwasser	Fahrradergometrie mit geringem Widerstand	Hochlagern, Kühlung v.a. nach Übungen	
Woche 7 - 8	Steigerung von 50 auf 100	0-120°	-	CKC Übungen 0-90° geringer Widerstand, isometrisches Quadric.training, Manuelle Patellamobilisation, Unterwasser, Lymphdrainage	Fahrradergometrie mit gesteigertem Widerstand	Rückkehr Beruf	

Dadfahron

Medizinische Universität Innsbruck Universitätsklinik für Orthopädie

MAXIMAL-INVASIVES REHAB - PROTOKOL !

Medizinische Universität Innsbruck Universitätsklinik für Orthopädie

Woche 7 - 8	von 50 auf 100	0-120°	-	Unterwasser, Lymphdrainage	mit gesteigertem Widerstand	Rückkehr Beruf
Monat 3 - 4	-	-		CKC Übungen 0-90° geringer Widerstand; , Unterwasser	Radfahren (Ergometrie und Straße, freie Belastung)	
Monat 5 - 6	-	-	-	Belastungssteigerung CKC und OKC Übungen / Koordinatives Training	leichtes Laufen, Schwimmen, Radfahren, Stufen & schräge Ebenen	-
Monat 7 - 9	-	-	-	Belastungssteigerung CKC und OKC Übungen / Koordinatives Training	'Cutting' (leichte Intensität, keine Wettkämpe, keine Kontakt)	Rückkehr zur Sportart nach 9 Monaten ('low - pivoting' Sportart)
Monat 10 - 12	-	-	-	Belastungssteigerung CKC und OKC Übungen / Koordinatives Training	Sportart - spezifisches Training	Rückkehr zur Sportart nach 12 Monaten ('high - pivoting' Sportart)

ROM: 'Range of motion' (Bewegungsamplitude)

Cutting: 'Bewegungen mit plötzlichen Richtungsänderungen'

CKC: 'closed kinetic chain' (Übungen der geschlossenen Bewegungskette)

OKC: 'open kinetic chain' (Übungen der offenen Bewegungskette)

ACI Studien der <u>letzten 10 Jahre</u>

Nur Level of Evidence (LoE) 1 oder 2

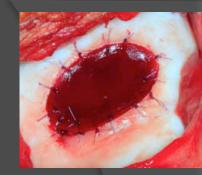
 Kontrollgruppe: nur alternative Cartilage-Repair Techniken, denn ohne Therapie bekannt schlechtes outcome

Comparative Evaluation of Autologous Chondrocyte Implantation and Mosaicplasty A Multicentered Randomized Clinical Trial

Beatrice Dozin, PhD,* Mara Malpeli, PhD,* Ranieri Cancedda, MD,*† Paolo Bruzzi, MD,‡ Silvano Calcagno, MD,§ Luigi Molfetta, MD,§[∥] Ferdinando Priano, MD,§[∥] Elisaveta Kon, MD,¶ and Maurilio Marcacci, MD¶

DOZIN ET AL. (2005 CJSM)

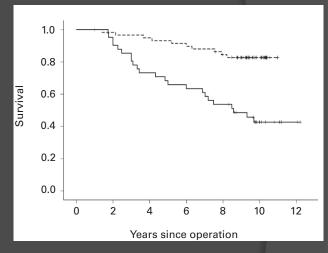
- RCT: 22 ACI-P vs. 22 Mosaikplastik
- 59% med., 11% at femur , 30 % patella
- FU: 10 Mo
- beide Gruppen signif. Verbesserung klinisch (Lysholm, IKDC)
- keine signif. Unterschiede zwischen Gruppen


A Randomized Trial Comparing Autologous Chondrocyte Implantation with Microfracture

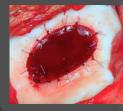
Findings at Five Years

By Gunnar Knutsen, MD, Jon Olav Drogset, MD, PhD, Lars Engebretsen, MD, PhD, Torbjørn Grøntvedt, MD, PhD, Vidar Isaksen, MD, Tom C. Ludvigsen, MD, Sally Roberts, PhD, Eirik Solheim, MD, PhD, Torbjørn Strand, MD, and Oddmund Johansen, MD, PhD

- RCT: 40 MF vs. 40 ACI-P
- Med (89%) & lat. (11%) Tibiofem.
- Signif. Besserung in beiden Gruppen (ICRS, Lysholm, SF-36, Tegner, VAS100pain) (nach 2a & 5a) - Keine signifikanten Unterschiede zwischen MF und ACI-P
- Auch keine Unterschiede zwischen Gruppen bzgl. makroskop. / histolog. Analyse (2a)


A prospective, randomised comparison of autologous chondrocyte implantation *versus* mosaicplasty for osteochondral defects in the knee

G. Bentley, L. C. Biant, R. W. J. Carrington, M. Akmal, A. Goldberg, A. M. Williams, J. A. Skinner, J. Pringle *From the Royal National Orthopaedic Hospital, Stanmore, England*


BENTLEY ET AL. (2003 & 2012 JBJS-B)

- RCT: 58 ACI-C/P vs. 42 Mosaikplastik
- med fem 52%, lat fem 18%, pat 25%, troch 3%, lat tib 1%
- FU: 10 Jahre !
- ACI: signif. Mehr Knie Score
 Verbesserung
- Fehlerrate: ACI 17% / Mosaicplasty 55%

Arthroscopic Second-Generation Autologous Chondrocyte Implantation Compared With Microfracture for Chondral Lesions of the Knee Elizaveta Kon, Alberto Gobbi, Giuseppe Filardo, Marco Delcogliano, Stefano Zaffagnini and Maurilio Marcacci Am J Sports Med 2009 37: 33 originally published online December 4, 2008 DOI: 10.1177/0363546508323256

The online version of this article can be found at: http://ajs.sagepub.com/content/37/1/33

KON ET AL. (2008 AJSM)

• nRCT: 40 MF vs. 40 MACI (alles arthroskopisch)

- 5a FU
- 67,5% med. / 27,5% lat. Femur / 5% Trochlea
- beide Gruppen: signifikante Besserung (IKDC, Tegner)
- signif. Vorteile für MACI (IKDC, Tegner)

Characterized Chondrocyte Implantation Results in Better Structural Repair When Treating Symptomatic Cartilage Defects of the Knee in a Randomized Controlled Trial Versus Microfracture Daniel B. F. Saris, Johan Vanlauwe, Jan Victor, Miroslav Haspl, Michael Bohnsack, Yves Fortems, Bruno Vandekerckhove, K. Frederik Almqvist, Toon Claes, Frank Handelberg, Koen Lagae, Jan van der Bauwhede, Hilde Vandenneucker, K. Gie Auw Yang, Mislav Jelic, Rene Verdonk, Nancy Veulemans, Johan Bellemans and Frank P.

Luyten Am J Sports Med 2008 36: 235 DOI: 10.1177/0363546507311095

The online version of this article can be found at: http://ajs.sagepub.com/content/36/2/235

SARIS ET AL. (2008 & 2009 AJSM)

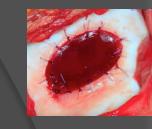
- RCT: 44 MF vs. 41 ACI (CCI)
- FU 3 Jahre
- Lateral und medial tibiofemoral
- Signif. bessere Histologie in ACI nach 18 Mo
- Signifikant mehr KOOS-Vebesserung in der ACI Gruppe nach 3 Jahren

NeoCart, an Autologous Cartilage Tissue Implant, Compared with Microfracture for Treatment of Distal Femoral Cartilage Lesions

An FDA Phase-II Prospective, Randomized Clinical Trial After Two Years

Dennis C. Crawford, MD, PhD, Thomas M. DeBerardino, MD, and Riley J. Williams III, MD

Investigation performed at Oregon Health and Science Center, Portland, Oregon; Keller Army Community Hospital, West Point, New York; Duke Sports Medicine Center, Durham North Carolina; University of California, San Francisco California; TRIA Orthopaedic Center, Bloomington, Minnesota; and the Hospital for Special Surgery, New York, NY


CRAWFORD ET AL. (JBJS-A 2012)

- RCT ACI vs. MF
- Medial und Laterales Compartment
- Signifikante Überlegenheit von ACI in IKDC, KOOS, VAS

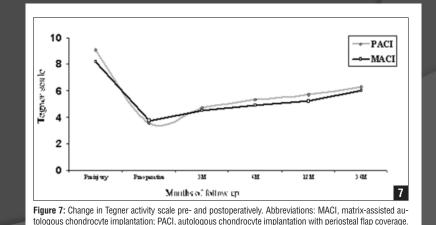
The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae

Simon Macmull • Parag K. Jaiswal • George Bentley • John A. Skinner • Richard W. J. Carrington • Tim W. R. Briggs

MACMULL ET AL. (INT.ORTHOP. 2012)

- nRCT: ACI-C vs. MACI
- PF- Gelenk !
- 40 Mo FU
- Beide führen zu signif. Verbesserung in Knie-Scores
- Keine signif. Überlegenheit einer der Gruppen

ACI speziell bei athletischen Populationen ?



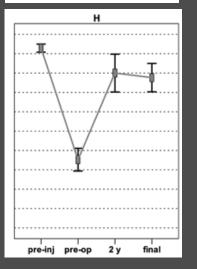
Autologous Chondrocyte Implantation for Knee Cartilage Injuries: Moderate Functional Outcome and Performance in Patients With High-impact Activities

Andreas Panagopoulos, MD, PhD; Louw van Niekerk, FRCS(Ed), FRCS(Orth); Ioannis Triantafillopoulos, MD, MSci, PhD

PANAGOPOULOS ET AL. (ORTHOPEDICS 2012)

- nRCT: ACI-P vs. MACI bei Berufssoldaten bzw. Sportler
- 3 Jahre FU mit Knie- & Aktivitäts-Scores
- Beide Gruppen: Signifikante
 Verbesserung in Knie Scores
- 31,5% schaffen Rückkehr zum pre-injury Aktivitäts-Level

Jedoch: fast alle Patienten: Re-Cart-Repair


Articular Cartilage Treatment in High-Level Male Soccer Players

KON ET AL. (AJSM 2011)

A Prospective Comparative Study of Arthroscopic Second-Generation Autologous Chondrocyte Implantation Versus Microfracture

Elizaveta Kon,^{*†} MD, Giuseppe Filardo,[†] MD, Massimo Berruto,[‡] MD, Francesco Benazzo,[§] MD, Giacomo Zanon,[§] MD, Stefano Della Villa,^{||} MD, and Maurilio Marcacci,[†] MD *Investigation performed at the Rizzoli Orthopaedic Institute, Bologna, Italy; the Gaetano Pini Orthopaedic Institute, Milano, Italy; the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; and the Isokinetic FIFA Medical Centre of Excellence, Bologna, Italy*

Tegner-Score

 \odot

 \odot

- nRCT: MF vs. MACI bei (Semi)Profi Fußballer
- 2 J FU: keine signif. Unterschied in Knie-Score
- 7,5 J FU: signif. Bessere Knie-Scores bei MACI
- Signif. Verbesserung in beiden Gruppen
- Rückkehr zum Leistungssport: 80 vs. 86% (MF vs. MACI)
- Erstes Match: nach 8 bzw. 12,5 Mo (MF vs. MACI)

RESUMÉ: EVIDENZ ACI

 Vorteile ACI gegenüber MF & Mosaikplastik – wenn ältere Techniken (ACI-P) nicht gewertet
 Gold-Standard des Cartilage - Repair

MENISKUS – ALLOGRAFT TRANSPLANTATION

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 27, No 1 (January, 2011: pp 101-112

Systematic Review

Meniscal Allograft Transplantation

David Hergan, M.D., David Thut, M.D., Orrin Sherman, M.D., and Michael S. Day, M.Phil.


KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Einleitung

- Meniskusläsion = häufigste Knieverletzung
- Drastische Evolution der Behandlung der Meniskuspathologien
 - ,If in doubt, get it out' (Biomech Folgen bekannt)

- 1970er: Partielle ME & Naht
- Keine Therapie f
 ür ,Postmeniskektomie-Syndrom
- 1984: Erste Meniskus Allograft Transplantation (MAT) (Milachowsky et al., München)

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Methodik

Einschlußkriterien

- Minimum 6mo FU
- Klinische Studie am Mensch
- klinisches, radiologisches oder histologisches Outcome
- Datenpooling möglich
- 44 Artikel: 1136 MAT bei 1068 Patienten

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Methodik

Grafts:

- Lyophilisiert (1,5%)
- Kryokonserviert (40%)
- Gefroren (36,2%)
- Mix (7,7%)
- Viable (?) (11,2%)
- Nicht angegeben (3,5%)

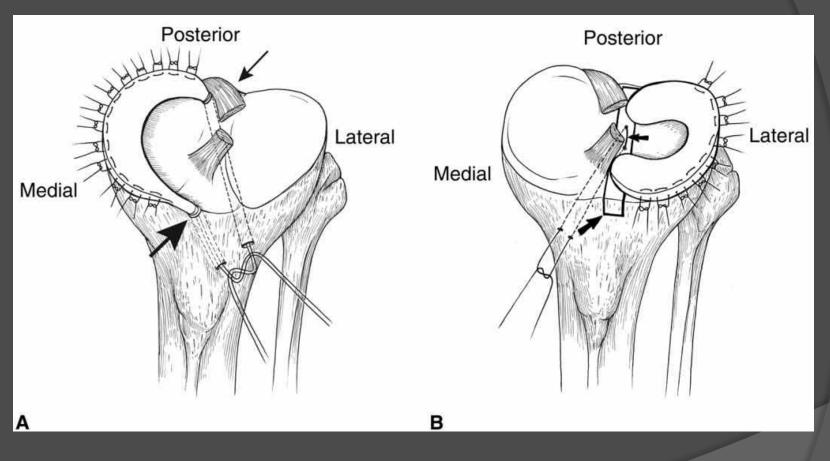
(Bestrahlung und Immun-Matching aufgegeben wegen schlechter Kosten-Nutzen-Ratio)

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Methodik


Technik:

- 17 Artikel: offene Technik
- I5 Artikel: arthroskopische Technik
- 3 Artikel: gemischt
- Größen-matching: meist Röntgen
- Fixation: meist knöchern (plug / bridge)
- Begleitende Eingriffe:
 - 36% isolierte MAT, ansonsten viele Kombinationen mit Knorpelchirurgie, Umstellungen, Kreuzband

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Meniscal Allograft Transplantation. Sekiya and Ellingson J Am Acad Orthop Surg. 2006; 14: 164-174

Methodik

KNEE

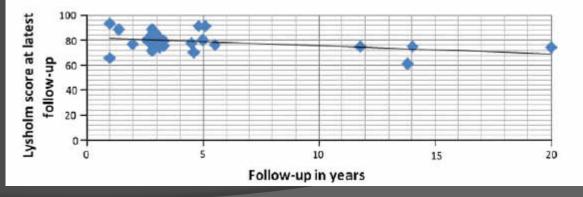
Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar • Aad Dhollander • René Verdonk • Karl Fredrik Almqvist • Peter Verdonk

Ergebnisse

- Alter 35 Jahre (range 14-69)
- 678 medial & 458 lateral
- Zeit seit erster Meniskusläsion: mean 10,7 J.
- Ourchschnittlich 2,5 Meniskus OP im Vorfeld
- Mehrheit der Patienten: °III / IV Knorpeldegen.

KNEE


Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Ergebnisse

Klinisches Outcome:

- FU im Mittel 5 Jahre (8Mo-20J)
- I2 Scores (Lysholm, IKDC, VAS...)
- Lysholm 44 prä 77 post
- VAS 48mm prä 17mm post
- Leichte Verschlechterung im Laufe der Zeit

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Ergebnisse

Outcome Bildgebung:

- Röntgen: 16 Artikel / 360 MAT: unterschiedl. Parameter (JSW, KL...)
 - Meisten Studien: Bewahrung d. Gelenkspaltweite
 - 5 Studien: Zunahme d. Gelenkspaltweite
- <u>MRI:</u> 19 Artikel / 404 MAT: gutes Einwachsen, jedoch häufig leichte Schrumpfung oder Extrusion
- <u>2nd look Arthroskopie</u>: 21 Artikel / 348 MAT 100 Biopsien: teilungsfähige Zellen, Neovaskularisierung ausgehend von Synovium, intakte Kollagenarchitektur

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Ergebnisse

Graft-Versagen

- Definition: (Sub)totale Destruktion folgende Graftexplantation (mit/ohne prothetische Konsequenz)
- In 10,6 % der Fälle

Komplikationen

- 128 Fälle
 - 43 Riße im Graft (ME oder Naht)
 - 27 Arthrofibrose (Narkosemob)
 - sonst

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar · Aad Dhollander · René Verdonk · Karl Fredrik Almqvist · Peter Verdonk

Diskussion

MAT:

- Erfolgreiche Prozedur für med. & lat.
 - Schmerz, Aktivitätslevel
- Indikation: Postmeniskektomie Symptome, Alter <55 Jahre, compliant
- Wichtig: Instabilitäten, Achsfehler etc. mitbehandeln
- Meniskus: ,immunologisches Privileg'; Meniskuszellen dicht in extrazelluläre Matrix eingebettet, HLA-match nicht nötig

KNEE

Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials

Mohamed ElAttar • Aad Dhollander • René Verdonk • Karl Fredrik Almqvist • Peter Verdonk

Diskussion

- Unklar: "prophylaktische" MAT wenn mehr als 50% Meniskektomie bei jungem Pat. (v.a. lateral)
- Conclusio:
 - effektive, relativ sichere Methode
 - Keine großen Komplikationen
 - Keine Verschlechterung der Ausgangsbedingungen f
 ür sp
 ätere prothetische Eingriffe
 - Höherer Level of Evidence möglich / ethisch vertretbar ?

Einleitung

Systematic Review

Meniscal Allograft Transplantation

David Hergan, M.D., David Thut, M.D., Orrin Sherman, M.D., and Michael S. Day, M.Phil.

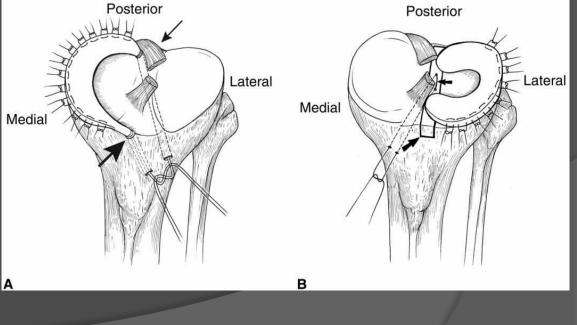
Systematisches Review

Instruction of the second s

- Verlangsamt MAT die Kniedegeneration ?
- Idealer Kandidat ?
- Survival ?
- Kombinierbarkeit mit Begleiteingriffen ?
- Unterschied bzgl. Med. / Lat. ?
- Zu erwartender Erfolg ?

Methodik

Systematic Review


Meniscal Allograft Transplantation

David Hergan, M.D., David Thut, M.D., Orrin Sherman, M.D., and Michael S. Day, M.Phil.

Einschlußkriterien

MAT mit knöcherner Fixation (plugs oder bridge)

• ≥ 2 Jahre FU

Systematic Review

Meniscal Allograft Transplantation

David Hergan, M.D., David Thut, M.D., Orrin Sherman, M.D., and Michael S. Day, M.Phil.

Studien – Charakteristika:

- 14 Studien (13 LoE IV, 1 LoE III)
 Grafts: 8 Kryokonserviert, 2 FF, 3 Mix, 1 ?
 Gepoolte Daten:
 352 MAT (323 Patienten)
 Alter 33,9 (14-58) Jahre
- Follow Up 54 Monate (24-167)

Ergebnisse

Systematic Review

Meniscal Allograft Transplantation

David Hergan, M.D., David Thut, M.D., Orrin Sherman, M.D., and Michael S. Day, M.Phil.

Klinisches Outcome:

- Patientenzufriedenheit: 60-95 %
- Alle Studien: Verbesserung in den Scores (IKDC, Lysholm etc.)
- Postop Aktivitätslevel
 - subjektiv ,normal' oder ,fast normal': 68-89%
 - 61-88% Rückkehr zum Sport (moderat)
- MAT-failure (? Definition): ca. 10% in ersten 2 Jahren (jene mit pr\u00e4op mehr Arthrose)

Diskussion

Systematic Review

Meniscal Allograft Transplantation

David Hergan, M.D., David Thut, M.D., Orrin Sherman, M.D., and Michael S. Day, M.Phil.

MAT ...

- Gute kurz- und mittelfristige Ergebnisse
- Iunge Pat. mit Knorpelschaden ≤ 3°
- Mit stabilem (stabilisiertem) Knie
- Gute Ergebnisse durch Kombinationseingriffe (außer > 3 Zusatzprozeduren)
- Häufig notwendige Folgeeingriffe: partielle Meniskektomie

TAKE HOME MESSAGES

- Gute (nicht sehr gute) Ergebnisse
- Streng ausgewählter Patient
- Ziel: ATL schmerzfrei, moderater Sport
- Wenn, dann offensive Behandlung (inkl. HTO, ev. Knorpel etc.)
- ,buying time procedure'

Konservative

Maßnahmen

ORALE GLUCOSAMIN -THERAPIE

Glucosamine therapy for treating osteoarthritis (Review)

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Akzeptierte Studien:

- RCTs die Effektivität oder Toxizität untersuchen
- Sontrolle mit Placebo oder sonst Ther.
- einfach- / doppelt verblindet
- quantitative Daten f
 ür Datenpooling
- Arthrose an allen Gelenken (Ausnahme Kiefer)
- Keine Kombinationspräparate

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Studien:

- 25 RCTs (1980-2008)
- 4963 Personen / Alter 60.7
- o durchschnittlich drop out: 17%
- 21 p.o.; 1500 mg/d
- 20: nur Knie
- 14: Rotta; 10: non-Rotta; 1: beides

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Outcome:

- Schmerz (25)
- ROM (6)
- Funktion (20)
- Radiografisches Outcome (3)
- HRQoL(1)

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Ergebnisse:

"POOLED": kein Benefit von Glucosamin bzgl. div. <u>Schmerzscores, WOMAC pain, function, stiffnes</u>s

Analysis 3.5. Comparison 3 Glucosamine versus placebo (adequate allocation concealment), Outcome 5 WOMAC Stiffness Subscale.

Review: Glucosamine therapy for treating osteoarthritis

Comparison: 3 Glucosamine versus placebo (adequate allocation concealment)

Outcome: 5 WOMAC Stiffness Subscale

Study or subgroup	Glucosamine		Placebo		Std. Mean Difference	Weight	Std. Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Fixed,95% CI		IV,Fixed,95% CI
Cibere 2004	71	56.06 (47.46)	66	54 (49.12)		9.9 %	0.04 [-0.29, 0.38]
Clegg 2006	317	70.6 (52.2)	313	70.5 (48.8)	+	45.5 %	0.00 [-0.15, 0.16]
Houpt 1999	45	3.39 (1.81)	53	3.73 (1.76)		7.0 %	-0.19 [-0.59, 0.21]
Hughes 2002	39	3.58 (2.34)	39	3.15 (1.64)		5.6 %	0.21 [-0.23, 0.66]
Pavelka 2002	101	1.94 (1.47)	101	2.26 (1.44)		14.5 %	-0.22 [-0.50, 0.06]
Rozendaal 2008		38.2 (25.5)	111	38.1 (23.6)	-+-	16.0 %	0.00 [-0.26, 0.27]
Zenk 2002	13	-59.6 (27.1)	10	-70 (20.6)		1.6 %	0.41 [-0.43, 1.24]
Total (95% CI)	697		693		+	100.0 %	-0.02 [-0.13, 0.08]
Heterogeneity: Chi ² = 4.97, df = 6 (P = 0.55); l ² = 0.0%							
Test for overall effect:	Z = 0.39 (P = 0	70)					

Analysis 3.6. Comparison 3 Glucosamine versus placebo (adequate allocation concealment), Outcome 6 WOMAC Function Subscale.

Review: Glucosamine therapy for treating osteoarthritis

Comparison: 3 Glucosamine versus placebo (adequate allocation concealment)

Outcome: 6 WOMAC Function Subscale

Study or subgroup	Glucosamine	e Plac			Std. Mean Difference	e Weight	Std. Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Fixed,95% CI		IV,Fixed,95% CI
Cibere 2004	71	419.85 (362.09)	66	418.64 (367.42)		6.8 %	0.00 [-0.33, 0.34]
Clegg 2006	317	531.8 (388.6)	313	540.3 (374.1)	+	31.3 %	-0.02 [-0.18, 0.13]
Herrero-Beaumont 2007	106	18.57 (11.4)	104	21.66 (10.89)		10.3 %	-0.28 [-0.55, 0.00]
Houpt 1999	45	25.98 (14.7)	53	27.17 (14.1)		4.8 %	-0.08 [-0.48, 0.32]
Hughes 2002	39	26.6 (19.1)	39	23.32 (15.01)	 +	3.9 %	0.19 [-0.26, 0.63]
McAlindon 2004	101	25 (11.2)	104	27 (12.8)		10.2 %	-0.17 [-0.44, 0.11]
Pavelka 2002	101	16.04 (10.67)	101	18.3 (11.03)	+	10.0 %	-0.21 [-0.48, 0.07]
Reginster 2001	106	580.1 (364.2)	106	610.8 (367.8)		10.5 %	-0.08 [-0.35, 0.19]
Rozendaal 2008		32.6 (24.2)	ш	34.1 (23.5)		11.0 %	-0.06 [-0.33, 0.20]
Zenk 2002	13	-73 (269)	10	-77 (21.1)		1.1%	0.16 [-0.67, 0.98]
Total (95% CI)	1010		1007		•	100.0 %	-0.08 [-0.17, 0.00]
Heterogeneity: Chi ² = 5.68, df = 9 (P = 0.77); I ² =0.0%							
Test for overall effect: $Z = 1.0$	87 (P = 0.061)						
						1	
					0 -0.5 0 0.5	L	
				Favours	Glucosamine Favours Pla	cebo	

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Ergebnisse: jedoch signif. Verbesserung bei WOMAC total

Comparison: 3 Glucosamine versus placebo (adequate allocation concealment)

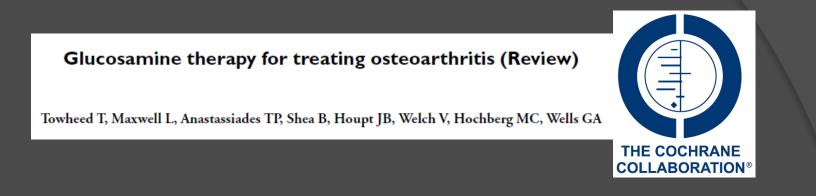
Outcome: 7 WOMAC Total

Study or subgroup	Glucosamine		Placebo		Std. Mean Differ	ence Weight	Std. Mean Differen
	N	Mean(SD)	N	Mean(SD)	IV,Fixed,95% CI		IV,Fixed,95%
Cibere 2004	71	605.62 (506.58)	66	602.26 (531.04)	-+-	15.6 %	0.01 [-0.33, 0.3
Herrero-Beaumont 2007	106	25.43 (15.17)	104	29.67 (14.27)		23.7 %	-0.29 [-0.56, -0.0
Houpt 1999	45	36.57 (19.5)	53	38.57 (19.3)		11.1 %	-0.10 [-0.50, 0.3
Pavelka 2002	101	22.7 (14.4)	101	25.58 (14.43)	-•+	23.0 %	-0.20 [-0.48, 0.0
Reginster 2001	106	909.7 (473.8)	106	1031.79 (484.8)		24.0 %	-0.25 [-0.52, 0.0
Zenk 2002	13	-72.2 (265)	10	-76.3 (21.5)		2.6 %	0.16 [-0.66, 0.9
Total (95% CI)	442		440		•	100.0 %	-0.18 [-0.31, -0.05
Heterogeneity: Chi ² = 2.89, o	f = 5 (P = 0.7	2); I ² =0.0%					
Test for overall effect: $Z = 2.6$	58 (P = 0.0074)					
					-1 -0.5 0 0.5	I.	
				Favours	Glucosamine Favours	Placebo	

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Ergebnisse:

 nur Studien mit Rotta-Präparation: signifikante Verbesserung bzgl. Schmerz und Funktion und radiolog. Progression und WOMAC total


Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Comparison: 4 Glucosamine versus placebo (Rotta preparation)

Outcome: I Pain

Study or subgroup	Glucosamine N	Mean(SD)	Placebo N	Mean(SD)		san Difference m,95% Cl	Weight	Std. Mean Difference IV,Random,95% Cl
Crolle 1980	15	0.21 (0.43)	15	1.13 (0.89)			11.5 %	-1.28 [-2.08, -0.49]
D'ambrosio 1981	15	0.33 (0.12)	15	1.2 (0.19)	•		65 %	-5.33 [-6.94, -3.71]
Drovanti 1980	40	0.95 (0.82)	40	1.88 (0.44)	-		13.6 %	-1.40 [-1.89, -0.91]
Herrero-Beaumont 2007	106	5.1 (3.03)	104	6 (3)	-		14.8 %	-0.30 [-0.57, -0.03]
Pavelka 2002	101	4.61 (3.45)	101	5.03 (3.13)	-		14.7 %	-0.13 [-0.40, 0.15]
Pujalte 1980	10	1.25 (0.25)	10	2.36 (0.79)	_ - -		9.6 %	-1.81 [-2.89, -0.74]
Reginster 2001	106	156.1 (101.9)	106	164.2 (104.5)	-	-	14.8 %	-0.08 [-0.35, 0.19]
Rovati 1997	79	24.3 (19.3)	77	50 (22)	+		14.4 %	-1.24 [-1.58, -0.89]
Total (95% CI) Heterogeneity: Tau ² = 0.50; (Test for overall effect: $Z = 4.0$			468); I ² =92%		•		100.0 %	-1.11 [-1.66, -0.57]
					-4 -2 0) 2 4		
				Favour	s Glucosamine	Favours Place	bo	

Analysis 4.7. Comparison 4 Glucosamine versus placebo (Rotta preparation), Outcome 7 WOMAC Total.

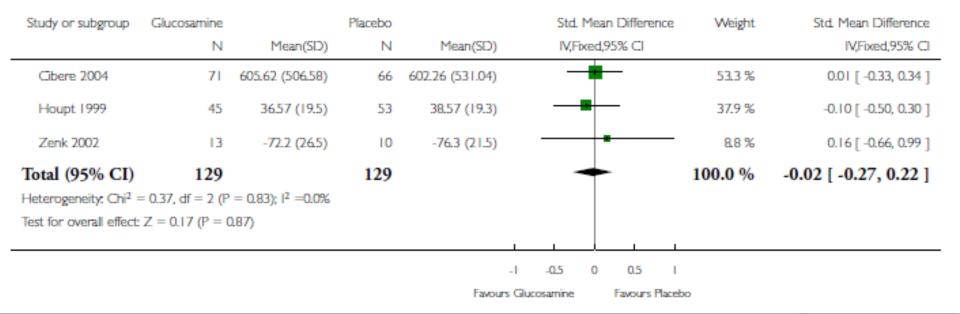
Review: Glucosamine therapy for treating osteoarthritis

Comparison: 4 Glucosamine versus placebo (Rotta preparation)

Outcome: 7 WOMAC Total

Study or subgroup	Glucosamine		Placebo		Std. Mei	an Difference	Std. Mean Difference
	N	Mean(SD)	N	Mean(SD)	IV,Fixed	,95% CI	IV,Fixed,95% CI
Cibere 2004	I.	0 (0)	I	0 (0)			0.0 [0.0, 0.0]
Herrero-Beaumont 2007	106	25.43 (15.17)	104	29.67 (14.27)			-0.29 [-0.56, -0.01]
Pavelka 2002	101	22.7 (14.4)	101	25.58 (14.43)			-0.20 [-0.48, 0.08]
Reginster 2001	106	909.7 (473.8)	106	1031.79 (484.8)			-0.25 [-0.52, 0.02]
Total (95% CI) Heterogeneity: $Chi^2 = 0.20$, df Test for overall effect: $Z = 3.07$		2 =0.0%	312		•		-0.25 [-0.40, -0.09]
	(1 40021)						
					-1 -0.5 0	0.5 1	
				Favou	rs Glucosamine	Favours Placebo	

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA



Ergebnisse:

o nur Studien mit Non-Rotta: kein signif. Effekte

Comparison: 5 Glucosamine versus placebo (non-Rotta preparation)

Outcome: 2 WOMAC Total

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Ergebnisse:

Alle Studien zusammen: sicher wie Placebo

Comparison: 3 Glucosamine versus placebo (adequate allocation concealment)

Outcome: 9 Toxicity (Number of Patients Reporting Adverse Events)

Study or subgroup	Glucosamine	Placebo	Risk Ratio	Weight	Risk Ratio		
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI		
Herrero-Beaumont 2007	95/106	89/104	+	22.9 %	1.05 [0.95, 1.16]		
Houpt 1999	6/46	7/55	·	1.6 %	1.02 [0.37, 2.84]		
Hughes 2002	25/40	27/40		6.9 %	0.93 [0.67, 1.28]		
McAlindon 2004	18/101	14/104		3.5 %	1.32 [0.70, 2.52]		
Noack 1994	8/126	13/126	·	3.3 %	0.62 [0.26, 1.43]		
Pavelka 2002	67/101	65/101	-	16.6 %	1.03 [0.84, 1.26]		
Reginster 2001	100/106	99/106	+	25.2 %	1.01 [0.94, 1.08]		
Rovati 1997	12/79	19/77	·	4.9 %	0.62 [0.32, 1.18]		
Rozendaal 2008	57/111	59/111		15.0 %	0.97 [0.75, 1.24]		
Total (95% CI)	816	824	+	100.0 %	0.99 [0.91, 1.07]		
Total events 388 (Glucosamine), 3	992 (Placebo)						
Heterogeneity. Chi ² = 6.01, df = 8 (P = 0.65); I ² = 0.0%							
Test for overall effect: $Z = 0.29$ (P	= 0.77)						

0.5 0.7 1 1.5 2

Favours Glucosamine Favours Placebo

Towheed T, Maxwell L, Anastassiades TP, Shea B, Houpt JB, Welch V, Hochberg MC, Wells GA

Interpretation d. Autoren:

- Gepoolte Analyse: Verbesserung nur bei wenigen Parametern (z.b. Womac total)
- Rotta-Preparation: Glucosamin ist signifikant besser als Placebo hinsichtlich Schmerz und Funktion

Osteoarthritis and Cartilage | C R S Repair Society

OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines

W. Zhang Ph.D., R. W. Moskowitz M.D., G. Nuki M.B., F.R.C.P.*, S. Abramson M.D.,
R. D. Altman M.D., N. Arden M.D., S. Bierma-Zeinstra M.Sc., Ph.D., K. D. Brandt M.D.,
P. Croft M.D., M. Doherty M.D., M. Dougados M.D., M. Hochberg M.D., M.P.H.,
D. J. Hunter M.D., K. Kwoh M.D., L. S. Lohmander M.D. and P. Tugwell M.D.
University of Edinburgh, Osteoarticular Research Group, The Queen's Medical Research Institute,
47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom

cantly changed and there was considerable heterogeneity of outcomes in different trials. With such marked heterogeneity, pooling of results may not be appropriate and estimates of overall ESs may be misleading. The possible reason(s) for the variation in outcomes also requires an explanation. In 10 placebo-controlled RCTs in which the Rottapharm preparation of glucosamine sulphate 1500 mg daily was used there were significant improvements in pain (ES = 1.31, 95% CI 0.64, 1.99) and function (ES = 0.51, 95% CI 0.05, 0.96) while there were no significant improvements in WOMAC pain or function indices in the pooled results of RCTs that used other glucosamine formulations¹²³. Analysis of the eight RCTs in which allocation

true differences between studies). An Egger test and funnel plot⁹⁰ did not suggest publication bias and there were no clear indications that the heterogeneity was attributable to differences in trial design, trial quality, the number of dropouts or differences in intention to treat analyses, but the differences in adequacy of the allocation concealment detected in the Cochrane review¹²³ were confirmed. The most striking differences, however, seemed to be related to the glucosamine preparation that was used. The ES for tri-

DANKE FÜR IHRE AUFMERKSAMKEIT!